MATH 5061 Lecture 12 (Apr 7) Im portant: Take-home final $4/28$ 2:30PM - $5/5$ 2:30PM A [Last Problem Set posted, due on 4/21.] Last week: conjugate pts & minimizing properties of geodesics . conjugate pt happens when d (expp) is singular at that pt . . Completeness of Riem mfd. Hopf-Rinow: geodesic completeness <=>>>>>> metric completeness $\begin{array}{cc} \text{(N)}, \text{g} & \text{d}(\rho, \text{g}) & \text{d}(\rho, \text{g}) & \text{(N)}, \text{d} \ \text{h} & \text{h} & \text{h} & \text{h} \end{array}$ r \leq \geq $\exp_{p}:\mathsf{T}_{p}\mathsf{M} \to \mathsf{M}$ is well-defined on the entire $\mathsf{T}_{p}\mathsf{M}$. a Indonesia
Ta $p = 1$ Any $p, q \in M$ can be connected by a minimizing geodesic in (M^2, g) .

Recall that a central question in Riem Geomety is:

 \mathcal{Q} : Given a complete (M^2, g) , how does the curvature (s) reflect the topology of M^n ? (E.g.: Gauss-Bonnet)

- . One example is Synge Thm: (M^2, g) , cpt, orientable, $K > 0 \Rightarrow \pi, M = 0$.
- . Today: Bonnet-Myers Thm & Cartan-Hadamard Thm.

Bonnet-Myers Thm:

Let (M^n, g) be a complete Riem manifold. Suppose \exists r $>$ 0 st. \forall p \in M, \forall V \in TpM where $\|\forall\|$ = 1 $Ric_{p}(V,V) \geq \frac{(n-1)}{r^{2}} > 0$
Ricci content of $S^{n}(r)$

Hence, $\Pi_{i}(M)$ is finite.

Remark: S.Y. Cheng proved the rigidity case

\n"Marimal Diameter Thm": drawn
$$
M = \pi r \Rightarrow (M^2, g) \cong (S^n(r), g_{round})
$$

Proof of Bonnet-Myers:

Idea: Use 2nd vaniation of geodesics to establish diameter bound. Take arbitrary points P. f EM. By Hopf-Rinow. 3 minihoring g_{source} 8 : [0,1] \longrightarrow (M, 9) 57. $\gamma(\circ) = \rho$. $\gamma(1) = \rho$. $L(\gamma) = d(\rho. \rho) =: \ell$ $\frac{1}{\sqrt{6}}$ M Claim: $l \leq \pi r$ (=> diam $(M^n, g) \leq \pi r$) Proof: Argue by contradiction. Suppose NOT, ie $l > \pi r$ δ minimizing \Rightarrow $E'(0) \ge 0$ V vanation of δ (4)

Fix a parallel O.N.B. $\left\{\frac{\mathfrak{d}(t)}{\rho}, e_i(t), ..., e_{n-i}(t)\right\}$ along 8 Define: $V_i(t)$:= (sin πt) $e_i(t)$ for i=1,...,n-1 Note $V_i(s)$ = $V_i(1) = 0 \Rightarrow$ and-ot fixing variations V'_s 2nd vansting of energy \Rightarrow $\sum_{i=1}^{n} (0) = \int_{0}^{1} \langle V_{i}, V_{i} \rangle - \langle R(Y, V_{i}) Y_{i} \rangle - \int_{0}^{1} \langle V_{i}, V_{i} \rangle - \langle R(Y, V_{i}) Y_{i} \rangle - \int_{0}^{1} \langle V_{i}, V_{i} \rangle - \int_{0}^{1} \langle V_{$ wit. Y's = $-\int_{1}^{1} \langle V_{1}'' + R(\gamma', V_{1}) \gamma', V_{1} \rangle dt$ = \int_{1}^{1} sin πt $\left[\pi^{2} - \ell^{2} K_{\pi(t)}(s_{\text{pen}}(e_{i}(t), \frac{v(t)}{\ell})) \right] dt$ $\geq \frac{n-1}{r^2}$ by assumption Summing $i = 1, ..., n-1$, $\sum_{i=1}^{n-1} E_i^{\prime\prime}(0) = \int_0^1 sin^2 \pi t \left[(n-1)\pi^2 - l^2 \left[R_1 \zeta_{\gamma(t)} \right] \frac{\gamma(t)}{2} \frac{\gamma(t)}{2} \right] dt$ $\leq \int_{a}^{1} sin^{2}\pi t \left[(n-1)\pi^{2} - (n-1) \frac{l^{2}}{r^{2}} \right] dt < 0$ \leq \circ by $(*)$ 2.0 Thus, $E_i^{\prime}(0) < 0$ for some i, contradicts $(\#)$. By Hopf-Rinow, dram (M,g) & πr + complete => M cpt. To prove T.M is finite, consider its universal cover TIM C $\widetilde{M} \in \frac{\pi}{4}$ ($\widetilde{M} \in \frac{\pi}{4}$ ($\widetilde{M} \in \frac{\pi}{4}$ ($\widetilde{M} \in \frac{\pi}{4}$ ($\widetilde{M} \in \frac{\pi}{4}$) Ric $\geq \frac{\pi}{4}$ = diam($\widetilde{M} \cdot \widetilde{J}$) $\leq \pi r$

& M cpt deck
transfonder J $L F$.JL M $m^{n}(M, g)$ Ric $\geq \frac{n-1}{r^{2}}$ T.M finite.

Q: Can we classify the "model geometries" in higher
dinunsions? de constant curvature spaces the constant curvature spaces

Cartan Theorem: S", IR", H" are the only simply connected, Complete Riem. n-manifolds with constant sectional curvatures.

The key idea to the proof is a lemma due to Cartan-Ambrose which says that the Riem. curvature tensor R determines Riem metric of locally. 9 mus R i
Ind \mathbf{r}

Notation for Carlan Ambrose lemma ⁱ

 $(M^n, 8)$ - complete Riem. mfd of same dim= n (\tilde{M}^n, \tilde{g})

Fix p ϵ M, $\widetilde{\rho} \in \widetilde{M}$ and a linear isometry $i : T_pM \to T_p\widetilde{M}$

Let $V \subseteq M$ be a wbol of p in M st the geodesic normal Coordinate systemin is well-defined in V

Define: $f : V \rightarrow \widetilde{M}$ by $f(q) := \exp_{\widetilde{p}} \cdot i \cdot \exp_{\rho}^{-1}(q)$ Let $Y: [0, t] \rightarrow M$ be geodesic from p to q parallel transports along γ , $\tilde{\gamma}$ $\widetilde{\gamma}: [0,t] \to M$ be geoderic from $\widetilde{\beta}$ to $\widetilde{\beta}$ $\overline{}$ Define: $\phi_t : T_qM \to T_{\widetilde{q}}M$ by $\phi_t(v) := P_t \cdot i \cdot P_t(v)$

Cartan-Ambrose Lemma: Under the notations above:

If $A \stackrel{1}{\sim} E \stackrel{1}{\sim} A \times (A \cdot A)$ $R(x, y, u, v) = \widetilde{R}(x, y, x, \varphi_t(y), \varphi_t(u), \varphi_t(v)).$ THEN. $f: V \rightarrow f(V)$ is a local isometry. "Sketch of Proof": Fix $g \in V$, and let $Y: [0, k] \rightarrow M$ p.b.a.l. $Fix \vee eT_qM$. By the choice of V . q is N_{eff} conjugate to p \Rightarrow 3 Jacobi field $V(t)$ along $Y(t)$ st $V(0) = 0$. $V(t) = V$ **y** $Chook$ a parallel O.N.B. $\{e_1, \ldots, e_n\}$ along γ st $e_n = \gamma$ w nte: $V(t) = \sum_{i=1}^{n} d_i(t) e_j(t)$ Ja_{1} cobi eq² = $\alpha_{j}'' + \sum_{i=1}^{n} R(e_{n}, e_{i}, e_{n}, e_{j}) \alpha_{i} = 0$ for $j=1,...,n$ Define: $\overline{V}(t) = \varphi_t(\overline{V}(t))$ V t & Lo.2] $\widetilde{Q}_{j}(t) := \varphi_{t} (e_{j}(t))$ O.N.B. parallel along \widetilde{Z} Note: $\overline{V}(t) = \sum_{i=1}^{n} \alpha_i(t) \overline{e_i}(t)$ \mathbb{B} y hypotuesis, R (en. ei. en. ej) = R (en. ei. en. eg). $\Rightarrow \alpha_j' + \sum_{i=1}^n \widetilde{R}(\widetilde{e}_n, \widetilde{e}_i, \widetilde{e}_n, \widetilde{e}_j) \alpha_i = 0 \quad \text{for } j=1,...,n$ $\overrightarrow{S}o$. $\overrightarrow{V}(t)$ is a Jacobi field along $\overrightarrow{\gamma}$ with $\overrightarrow{V}(o) = o$.

Since P_t , $\tilde{P_t}$ are isometries, we have $\|\tilde{\mathbf{V}}(t)\| = \|\mathbf{V}(t)\|$ Finally, one checks that $\widehat{V}(k) = df_0(v)$, ie. dfg is isometry. \mathbf{a}